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Abstract

We consider a model for which it is important, early in processing, to estimate some variables
with high precision, but perhaps at relatively low recall. If some variables can be identified with
near certainty, they can be conditioned upon, allowing further inference to be done efficiently.
Specifically, we consider optical character recognition (OCR) systems that can be bootstrapped
by identifying a subset of correctly translated document words with very high precision. This
“clean set” is subsequently used as document-specific training data. While OCR systems produce
confidence measures for the identity of each letter or word, thresholding these values still produces
a significant number of errors.

We introduce a novel technique for identifying a set of correct words with very high precision.
Rather than estimating posterior probabilities, webound the probability that any given word is
incorrect using an approximate worst case analysis. We giveempirical results on a data set of
difficult historical newspaper scans, demonstrating that our method for identifying correct words
makes only two errors in 56 documents. Using document-specific character models generated from
this data, we are able to reduce the error over properly segmented characters by 34.1% from an
initial OCR system’s translation.1

Keywords: optical character recognition, probability bounding, document-specific modeling,
computer vision
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1. Introduction

A long-standing desire in classification has been the ability to adapt a model specifically to a given
test instance. For instance, if one had a reliable method for gauging the probability of correctness
of an initial set of predictions, then one could iteratively use the predictionslikely to be correct to
refine the classification model and adapt to the specific test distribution. Thisgeneral strategy has
been considered in the past (Ho, 1998; Hong and Hull, 1995b,c), but particularly within the domain
of computer vision, it has not had much success. We believe that this lack ofsuccess stems from
the difficulty of reliably estimating probabilities in the high dimensional vector spaces common in
computer vision. Rather than attempting to reliably estimate probabilities for all predictions, we
instead propose a shift in perspective, focusing on identifying cases where we can reliably bound
probabilities.

We show that this old idea of using a first pass system to identify some reliable samples, which
are then used in turn to train a second pass system, can be quite powerful when the method of
selecting reliable samples is appropriate. In particular, by formally upper bounding the probability
of error in a first pass system, we can select results whose probability oferror is not greater than
some very small threshold, leading to the automatic selection of a subset of results of the first
pass system with very low error rate. These results can be considered highly reliable “training
data”, specific to the test distribution, for a second pass system. Using this test-specific training
data, we demonstrate significant error reductions on some difficult OCR problems. Thus, the main
contribution of our paper is the combination of standard bounding techniqueswith the idea of multi-
pass test-specific classification systems. To our knowledge, there is no preceding work which does
this.

We first describe why adapting a model to a specific test distribution is an important goal, and
in Section 2, discuss our rationale for bounding rather than estimating probabilities.

1.1 Adapting to the Test Distribution

In supervised learning, we are given training data{(xi ,yi)} to learn a model capable of predicting
variablesy from observationsx, and apply this model at test time to new, previously unseen obser-
vationsx′. An important implicit assumption in this framework is that the training instances(xi ,yi)
are drawn from the same distribution as the test instances(x′,y′). Unfortunately, however, this is
often not the case, and when this assumption is violated, the performance of supervised learning
techniques can decay rapidly.

One natural setting in which this scenario arises is text recognition. In everyday life, we en-
counter a variety of fonts and character appearances that differ widely from each other and may be
entirely new to us, such as in outdoor signs, graffiti, and handwritten messages. Despite not having
appropriate labeled training examples, as humans we would be able to quickly adapt and recognize
such text, whereas a machine learning algorithm would not.

There are several methods of addressing this problem. We may attempt to leverage knowledge
from a closely related task and apply that knowledge to solve the new test problem, as in transfer
learning. Alternatively, we may attempt to explicitly parameterize and model the manner in which
the data varies, as in a hierarchical Bayes model. Instead, we argue fora third, non-parametric
option, inspired by human behavior.

When presented with text in an unusual font, or with a new situation in general, we argue that
humans will first identify elements that they are very confident in their understanding of, based on
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previous experience. For instance, they may be able to identify a particularletter based on similarity
to previously seen fonts or by the occurrence statistics. Once they have done this, they will condition
on this information and use it as an aid to understanding the remaining elements.

Similarly, we argue that a machine learning algorithm could benefit by first understanding, with
very low probability of being incorrect, some subset of the new test instance, and conditioning on
this information as training data specific to the test case.

Ideally, rather than making a hard decision and potentially throwing away useful information,
we would like to maintain a distribution over the possible interpretations, such as adistribution over
the possible characters a particular letter could be. We could then reason probabilistically over the
different joint labelings of all characters to determine a maximum a posterioriestimate. In practice,
however, we believe this has two pitfalls. The first is the difficulty in obtaining accurate distribu-
tions over labels, especially when dealing with very high dimensional data, aswe describe later.
These initial errors can then propagate as we do further reasoning. The second is the computational
complexity of performing learning and inference on such distributions overlabelings. Instead, by
making a hard decision, we can make learning and inference much more efficient, and make use of
the conditioned information as test-case specific training data with minor modifications to standard
algorithms. In essence, by making hard decisions only where we are veryconfident of the labeling,
we gain the computational efficiencies associated with making such decisions without the common
risk of making unrecoverable errors.

1.2 Document-Specific OCR

In this paper, we focus on the problem of improving optical character recognition (OCR) perfor-
mance on difficult test cases. In these instances, the non-stationarity between the distribution in the
training examples and distribution in the test cases arises due to factors suchas non-standard fonts
and corruption from noise and low resolution.

Applying the reasoning above, we would like to obtain training data from the test documents
themselves. In this paper, we use the output from an OCR program and identify a list of words which
the program got correct. We can then use these correct words to build new,document-specificOCR
models.

While identifying correct words in OCR program output may seem like an easy thing to do, to
our knowledge, there are no existing techniques to perform this task with very high accuracy. There
are many methods that could be used to produce lists of words that are mostly correct, but contain
some errors. Unfortunately, such lists are not much good as training data for document-specific
models since they contain errors, and these errors in training propagate tocreate more errors later.

Although some classifiers may be robust to errors in the training data, this will be very dependent
on the number of training examples available. For characters such as ’j’ that appear less frequently,
having even a few errors may mean that more than half of the training examplesare incorrect. While
we can tolerate some errors in character sets such as ’e’, we cannot tolerate them everywhere.

Thus, it is essential that our error rate be very low in the list of words we choose as correct. As
described below, our error rate is less than 0.002, as predicted by our theoretical bounds, making
our generated lists appropriate for training document-specific models.

We first give some background on why we believe this problem of bounding probabilities to
achieve high-precision, document-specific training data is interesting. In Section 3, we present the
specifics of our method for creating nearly error-free training sets, and give theoretical bounds on the
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probability of error in these sets in Section 4. We then describe how we use the document-specific
model to reduce the error rate in Section 5, and give experimental set-up and results in Section 6.
Finally, we conclude with directions for future research in OCR, as well aspotential applications of
our method to other problem domains, in Section 8.

2. Background

Humans and machines both make lots of errors in recognition problems. However, one of the most
interesting differences between people and machines is that, for some inputs,humans are extremely
confident of their results and appear to be well-justified in this confidence.Machines, on the other
hand, while producing numbers such as posterior probabilities, which aresupposed to represent
confidences, are often wrong even when posterior probabilities are extremely close to 1.

This is a particularly vexing problem when using generative models in areaslike computer
vision and pattern recognition. For example, consider a two class problem inwhich we are dis-
criminating between two similar image classes,A andB. Because images are so high-dimensional,
likelihood exponents are frequently very small, and small percentage errors in these exponents can
render the posteriors meaningless. For example, suppose thatPr(image|A) = exp(−1000+εA) and
Pr(image|B) = exp(−1005+ εB), whereεA andεB represent errors in the estimates of the image
distributions.2 Assuming a roughly equal prior onA andB, if εA andεB are Gaussian distributed
with standard deviation a small proportion (for instance, around 1%) of themagnitude of the expo-
nents, the estimate of the posterior will be extremely sensitive to the error. In particular, we will
frequently conclude, incorrectly, thatPr(B|image) ≈ 1 andPr(A|image) ≈ 0. This phenomenon,
which is quite common in computer vision, makes it quite difficult to assess confidence values in
recognition problems.

Rather than estimating posterior probabilities very accurately in order to be sure of certain re-
sults, we suggest an alternative. We formulate our confidence estimate as an hypothesis test that a
certain result isincorrect, and if there is sufficient evidence, we reject the hypothesis that the re-
sult is incorrect. As we shall see, this comes closer toboundingthe probabilities of certain results,
which can be done with greater confidence, thanestimatingthe probability of results, which is much
more difficult. A critical aspect of our approach is that if there is insufficient evidence to reject a
hypothesis, then we make no judgment on the correctness of the result. Ourprocess only makes
decisions when there is enough evidence, and avoids making decisions when there is not.

One interesting aspect of our work is that we make use of our bounding result as an important
intermediate step in our overall system. In general, bounds given in machinelearning are used to
give theoretical justification for pursuing a particular algorithm and to gain insights on why they
work. For instance, variational mean field inference can be viewed as optimizing a lower bound on
the log partition function (Koller and Friedman, 2009).

In contrast, we make active use of our bound to guarantee that our document-specific training
data will be nearly error-free. In this way, our bound plays in an integral role in the system itself,
rather than as an analysis of the system.

2. Such errors are extremely difficult to avoid in high-dimensional estimation problems, since there is simply not enough
data to estimate the exponents accurately.
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2.1 OCR and Document-Specific Modeling

Despite claims to the contrary, getting OCR systems to obtain very high accuracyrates on mod-
erately degraded documents continues to be a challenging problem (Nagy,2000). One promising
approach to achieving very high OCR accuracy rates is to incorporatedocument-specific model-
ing (Ho, 1998; Hong and Hull, 1995b,c). This set of approaches attempts to refine OCR models to
specifically model the document currently being processed by adapting to the fonts in the document,
adapting to the noise model in the document, or adapting to the lexicon in the document.

If one had some method for finding a sample of words in a document that wereknown to be
correct with high confidence, one could effectively use the characters in such words as training data
with which to build document-specific models of the fonts in a document. Resolvingthis circular-
dependency problem is not easy, however.

To tackle this problem of producing “clean word lists” for document-specific modeling, we
consider a somewhat different approach. Rather than trying to estimate theprobability that an inter-
mediate output of an OCR system (like an HMM or CRF) is correct and then thresholding this prob-
ability, we instead form a set of hypotheses about each word in the document. Each hypothesis poses
that one particular word of the first-pass OCR system is incorrect. We thensearch for hypotheses
that we can reject with high confidence. More formally, we treat a third party OCR system (in this
case, the open source OCR program Tesseract (http://code.google.com/p/tesseract-ocr/)
as a null hypothesis generator, in which each attempted transcriptionT produced by the OCR sys-
tem is treated as the basis for a separate null hypothesis. The null hypothesis for wordT is simply
“Transcription T is incorrect.”. Letting W be the true identity of a transcriptionT, we notate this as

T 6=W.

Our goal is to find as many hypotheses as possible that can be rejectedwith high confidence.
In this paper, we take high confidence to mean with fewer than 1 error in a thousand rejected
hypotheses. As we mention later, we only make 2 errors in 4465 words in ourclean word lists, even
when they come from quite challenging documents.

Before proceeding, we stress that the following arenot goals of this paper:

• to present a complete end-to-end system for OCR,

• to produce accurate estimates of the probability of error of particular words in OCR.

Once again, our goal is to produce large lists of clean words from OCR output and demonstrate
how they can be used for document-specific modeling. After presenting our method for produc-
ing clean word lists, we provide a formal analysis of the bounds on the probability of incorrectly
including a word in our clean word list, under certain assumptions. When ourassumptions hold,
our error bound is very loose, meaning our true probability of error is muchlower. However, some
documents do in fact violate our assumptions.

We analyze this approach, and find that, with modest assumptions, we can bound the probability
that our method produces an error at less than 0.002. Moreover, as a first-step validation of our
general approach, we give a simple method for building a model from the document-specific data
that significantly reduces the character error on a difficult, real-world data set.

We also compare our method with using the built-in confidence measure of a public domain
OCR system, and thresholding this value to produce document-specific training data. We find that
this method produces results that are less consistent and worse at reducing character error than our
method.

367



HUANG, KAE, DOERSCH ANDLEARNED-M ILLER

2.2 Related Work

Our approach has ties with both prior work in OCR as well as methods outside of OCR, such as in
image retrieval. We give a survey of related work below.

2.2.1 IN OCR

There has been significant work done in making use of the output of OCR inan iterative fashion,
although all different from the work we present here. Kukich (1992)surveyed various methods
to correct words, either in isolation or with context, using natural languageprocessing techniques.
Isolated-word error correction methods analyze spelling error patterns, for example, by deriving
heuristics for common errors or by examining phonetic errors, and attemptingto fix these errors
through techniques such as minimum edit distance,n-gram statistics, and neural networks. Context-
dependent word correction methods include using statistical language modelssuch as wordn-gram
probabilities to correct errors using neighboring words.

Kolak (2003) developed a generative model to estimate the true word sequence from noisy OCR
output. They assume a generative process that produces words, characters, and word boundaries,
in order to model segmentation and character recognition errors of an OCRsystem. The model
can be trained on OCR output paired with ground truth and then used to post-process and correct
additional OCR output by finding the set of words, characters, and word boundaries that maximize
the probability of the observed labeling.

Our work is distinguished from the above mentioned methods in that we examine the document
images themselves to build document-specific models of the characters. A similar idea was used
by Hong and Hull (1995a), who examined the inter-word relationships of character patches to help
constrain possible interpretations. Specifically, they cluster whole word images and use majority
voting of the associated OCR labels to decide on the correct output and create character image
prototypes. This information is then used to correct additional errors by examining sub-patterns
(e.g., a word is a prefix of another word) and decompositions of unknownwords into known word
patterns using the document images. Our work extends these ideas to produce clean, document-
specific training data that can then be used in other methods, rather than onlyusing potentially
noisy labels through sub-pattern and decomposition analysis.

Our work is also related to a variety of approaches that leverage inter-character similarity in
documents in order to reduce the dependence upon a priori character models. One method for
making use of such information is to treat OCR as a cryptogram decoding problem, which dates
back to Casey (1986) and Nagy (1986). After performing character clustering, decoding can be
performed by a lexicon-based method (Ho and Nagy, 2000) or using hidden Markov models (Lee,
2002); however, such methods are limited by the assumption that characterscan be clustered cleanly
into pure clusters consisting of only one character. This particular problem can be overcome by
solving the decoding problem iteratively, using word and character statistics to first decode least
ambiguous characters, then to iteratively decode progressively more difficult characters (Kae and
Learned-Miller, 2009).

An alternative approach to obtaining document-specific character models is presented by Ed-
wards and Forsyth (2005), using an iterative algorithm to extract character templates from high
confidence regions. One major difference is that we provide a theoretical bound on the number of
errors expected using our algorithm to identify highly confident words. Another significant differ-
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ence is that the authors provide a small amount of manually defined training data in their application,
whereas we provide none.

Another method for leveraging inter-character similarity is to perform some typeof charac-
ter clustering. Hobby and Ho (1997) perform clustering in order to replace individual, potentially
degraded character images, with a smoothed image over the cluster. Breuel(2003) learns a proba-
bilistic similarity function to perform nearest-neighbor classification of characters.

The inability to attain high confidence in either the identity or equivalence of characters in these
papers has hindered their use in subsequent OCR developments. We hope that the high confidence
values we obtain will spur the use of these techniques for document-specific modeling.

2.2.2 OTHER WORK

Outside of OCR, our work is similar to Leisink and Kappen (2003), which deals with inference in
graphical models for which exact inference is intractable. As an alternative to approximate inference
techniques (which may bound a different quantity, the log partition function), they directly bound the
marginal probabilities at each node in an iterative process called bound propagation. Each iteration
consists of solving a linear program, where some of the constraints are dueto bounds computed by
previous iterations.

The end product of bound propagation is an upper and lower bound for each of the marginal
probabilities of the nodes in the graphical model, with no guarantee on the tightness of any particular
bound. In contrast, our work focuses on finding the subset of wordsfor which we can put a very
tight bound on the probability of error, and thus is a different approachunder the general idea of
bounding probabilities.

Our work is also related to the problem of covariate shift (Shimodaira, 2000), in which it is
assumed that the conditional distributionsp(y|x) remain the same for both the training and test
distributions, but the distribution on the observationsp(x) may differ. In this case, lettingp0(x) be
the distribution for the training set, andp1(x) be the distribution for a test set, one can reweight the
log likelihood of the training instances withp1(x)

p0(x)
. The principal difficulty is estimating this ratio.

In particular, in OCR, test documents may have a range of degradation andnoise, and potentially
unseen font models, and thus the support ofp0(x) may potentially not contain the support ofp1(x),
in which case a re-weighting approach could not be applied. Moreover,noise and font appearance
specific to the test document may also lead to a change inp(y|x) for ambiguous or noisyx. Instead,
our work attempts to identify highly confident labelings (x’,y’) in order to characterize the test-
specific distribution over appearance and labels.

Another area closely related to the method presented in this paper is the meta-recognition work
of Scheirer et al. (2011). They consider the problem of multiclass recognition, such as object or face
recognition. A given test image produces a set of scores indicating how well the test image matched
each class. Since the test image can belong to at most one class, all but the highest returned score
can be used to model the distribution of non-matching scores, specific to the single test image. The
authors use some fraction of the top non-matching scores produced for atest image to model the
tail of the non-matching distribution using extreme value theory, and then use this distribution to
normalize the top matching score.

Similar to our work, the tail distribution that is modeled can be used to attempt to reject the null
hypothesis that the top matching score belongs to the non-matching distribution.Our work differs
in that we specifically focus only on cases where we can reject this null hypothesis with very high
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confidence. To do so, we leverage the appearance of the entire document, which allows us to be
more robust to cases where the test distribution differs substantially from the training distribution.

The idea of identifying objects which can confidently be given a particular label is also an
important component of query expansion in the information retrieval field. Query expansion is a
technique used to add terms to an initial query based on the highly ranking documents of the initial
query. In Chum et al. (2007), query expansion is used for image retrieval where the initial results of
an image query are processed to find resulting images that the system is confident match the initial
query. The confidence in a particular match is evaluated using a spatial verification scheme that is
similar to our consistency check presented below. This verification is criticalto query expansion, as
false positives can lead to drift, causing irrelevant features to be addedto the expanded query. Later,
we propose a possible extension to see whether our bound analysis can be applied to give a bound
on the probability of a false match passing the spatial verification.

Building models specific to a test image has also been applied in other areas of computer vision.
In work by Nilsback and Zisserman (2007), an initial, general flower model is applied to an image to
segment a flower from the background. This initial segmentation is used to build an image-specific
color model of the foreground flower, and this process of segmentation and color estimation is
iterated until convergence.

Berg et al. (2007) follow a similar approach to image parsing, first extracting a per pixel segmen-
tation of the image, then using pixels with high confidence to learn an image-specific color model
of sky and building. Ramanan (2006) uses an initial edge model to infer the pose of a person in the
image, then uses this to build an image-specific color model, and iterates until convergence. These
methods can be sensitive to the initial steps, underscoring the need for highprecision in construct-
ing image-specific models. Sapp et al. (2010) take a slightly different approach by using similarity
between a test image and a set of training exemplars and kernel regression to learn image-specific
model parameters, and then performing inference with the image-specific model.

3. Method for Producing Clean Word Lists

In this section, we present our method for examining a document bitmap and theoutput of an OCR
system for that document to produce a so-calledclean word list, that is, a list of words which we
believe to be correct, with high confidence. Our success will be measuredby the number of words
that can be produced, and whether we achieve a very low error rate in the clean list. Ideally, we must
produce a clean word list which is large enough to provide sufficient training data for document-
specific modeling.

We assume the following setup.

• We are provided with a documentD in the form of a grayscale image.

• We are provided with an OCR system.

• We further assume that the OCR system provides anattemptedsegmentation of the docu-
ment D into words, and that the words are segmented into characters. It is not necessary
that the segmentation be entirely correct, but merely that the system produces an attempted
segmentation.

• In addition to a segmentation of words and letters, the system should producea best guess
for every character it has segmented, and hence, by extension, of every word (or string) it has
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segmented. Of course, we do not expect all of the characters or words to be correct, as that
would make our exercise pointless.

• Using the segmentations provided by the OCR system, we assume we can extract the gray-
valued bitmaps representing each guessed character from the original document image.

• Finally, we assume we are given a lexicon. Our method is relatively robust tothe choice of
lexicon, and assumes there will be a significant number of non-lexicon words in the document.

We define a few terms before proceeding. TheHamming distancebetween two strings of the
same number of characters is the number of character substitutions necessary to convert one string to
the other. TheHamming ballof radiusr for a wordW, Hr(W), is the set of strings whose Hamming
distance toW is less than or equal tor. Later, after defining certain equivalence relationships among
highly confusable characters such as ’o’ and ’c’, we define apseudo-Hamming distancewhich is
equivalent to the Hamming distance except that it ignores substitutions among characters in the
same equivalence class. We also use the notions of edit distance, which extends Hamming distance
by including joins and splits of characters, and pseudo-edit distance, which is edit distance using
the aforementioned equivalence classes.

Our method for identifying words in the clean list has three basic steps. We consider each word
T output by the initial OCR system.

1. If T is not in the lexicon, we discard it and make no attempt to classify whether it is correct.
That is, we do not put it on the clean word list.3

2. Given thatT is a lexicon word, we evaluate whetherH1(T) is non-empty, that is, whether
there are any lexicon words for which a single change of a letter can produceT. If H1(T) is
non-empty, we discardT and again make no attempt to classify whether it is correct.

3. Assuming we have passed the first two tests, we now perform aconsistency check(described
below) of each character in the word. If the consistency check is passed, we declare the word
to be correctly recognized and include it in the clean list.

3. Why is it not trivial to simply declare any output of an OCR system that is alexicon word to be highly confident?
The reason is that OCR systems frequently use language models to project uncertain words onto nearby lexicon
words. For example, suppose the original string was “Rumpledpigskin”, and the OCR system, confused by its initial
interpretation, projected “Rumpledpigskin” onto the nearest lexicon word“Rumplestiltskin”. A declaration that this
word is correct would then be wrong. However, our method will not failin this way because if the true string were
in fact “Rumpledpigskin”, the character consistency check would never pass. It is for this reason that our method is
highly non-trivial, and represents a significant advance in the creation of highly accurate clean word lists.

We could potentially restrict our attention to OCR systems that did not project onto lexicon words, or for which
it is possible to access intermediate results prior to such projection. For such results, it is much more likely that a
word labeled as a lexicon word with an empty Hamming ball of some radius is,in fact, correctly labeled. We choose
not to make such a restriction, both so that our method is more general, and because projecting uncertain words to
nearby lexicon words can often substantially increase the labeling accuracy. In other words, by only considering
labelings obtained without such projection, we may find far fewer words that we can confidently classify as being
correctly labeled, due to the lower accuracy of the initial OCR system. The benefit of using a lexicon is evident in the
scene text recognition work of Weinman et al. (2009). In this work, simply forcing all predicted words to be lexicon
words led to a 3 percentage point increase in word accuracy, and incorporating factors with lexicon information into
the probability model led to an additional 5 percentage point increase in word accuracy. By performing a more robust
analysis than accepting lexicon words, our method is equally applicable to sophisticated OCR systems that make use
of lexicon information.
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3.1 Consistency Check

In the following discussion, we use the termglyphto refer to a rectangular portion of an image that
is likely to be a single character, but may be only a portion of a character, multiple characters, or a
stray mark. LetWj be the true character class of thejth glyph of a wordW, and letTj be the initial
OCR system’s interpretation of the same glyph. The goal of a consistency check is to ensure that the
OCR system’s interpretation of a glyph is reliable. We will assess reliability by checking whether
other similar-looking glyphs are usually interpreted the same by the OCR system.

To understand the purpose of the consistency check, consider the following situation. Imagine
that a document contains a stray mark that does not look like any characterat all, but was interpreted
by the initial OCR system as a character. If the OCR system thought that the stray mark was a
character, it would have to assign it to a character class like ’t’. We would like to detect that this
character is unreliable. Our scheme for doing this is to find other characters that are similar to this
glyph, and to check the identity assigned to those characters by the initial OCRsystem. If a large
majority of those characters are given the same interpretation by the OCR system, then we consider
the original character to be reliable. Since it is unlikely that the characters closest to the stray mark
are clustered tightly around the true character ’t’, we hope to detect that the stray mark is atypical,
and hence unreliable.

More formally, to test a glyphg for reliability, we first find theM glyphs in the document that
are most similar tog (using normalized correlation as the similarity measure). If a fractionθ of the
M glyphs most similar tog have the character labelc, then we say that the glyphg is θ-dominated
by c. More precisely, we run the following procedure:

// n : vector storing the counts for each character c.
// L : set of character labels.
// M : number of glyphs to compare to.
n[c]← 0, ∀c∈ L
for i← 1 to M do

c← label of characterith most similar tog
n[c] = n[c]+1
if n[c]

i+1 > θ then
return g is θ-dominated byc

end
end
return g is undominated

Algorithm 1 : Consistency check algorithm.

There are three possible outcomes of the consistency check. The first isthat the glyphg is dominated
by the same classc as the OCR system’s interpretation ofg, namelyTj . The second outcome is thatg
is dominated by some other class that does not matchTj . The third outcome is thatg is undominated,
meaning that the neighbors ofg are relatively inconsistent. In the latter two cases, we declare the
glyphg to beunreliable. The interpretation of glyphg is reliable only ifg is dominated by the same
class as the original OCR system. Furthermore, a word is included in the cleanlist only if all of the
characters in the word are reliable.

The constants used in our experiments wereM = 20 andθ = 0.66. That is, we compared
each glyph against a maximum of 20 other glyphs in our reliability check, and we insisted that a
“smoothed” estimate of the number of similarly interpreted glyphs was at least 0.66 before declaring
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a character to be reliable. We now analyze the probability of making an errorin the clean set, under
a specific set of assumptions.

4. Theoretical Bound

For a word in a document, letW be the ground truth label of the word andT be the initial OCR
system’s labeling of the word. Consider the problem of trying to estimate the probability that the
labeling was correct,P(W = wt |T = wt). It is difficult to formulate a bound or performance guaran-
tee on such an estimate, due to the non-stationarity in the sequence of words.The distribution and
appearance of words is dependent on the topics and fonts present in the document containing the
words, and any noise in the document, which may range from local, such asstray marks, to global,
such as low contrast. Therefore, we would not be able to rely on a general i.i.d. assumption on the
words.

Rather than attempting to estimate the probability that the labeling was correct, we circumvent
the above problems by focusing on bounding the probability for a subset of words. LetC be a
binary indicator equal to 1 if the word passed the consistency check. We want to upper bound the
probability Pr(W 6= wt |T = wt ,C = 1) whenwt is a lexicon word and has an empty Hamming ball
of size 1. We decompose the probability into three terms:

Pr(W 6= wt |T = wt ,C= 1) = ∑
w6=wt

Pr(W = w|T = wt ,C= 1)

= ∑
w6=wt ,w∈Lex

Pr(W = w|T = wt ,C= 1)

+ ∑
w6=wt ,w/∈Lex

Pr(W = w|T = wt ,C= 1)

= ∑
w6=wt ,w∈Lex,|w|=|wt |

Pr(W = w|T = wt ,C= 1) (1)

+ ∑
w6=wt ,w∈Lex,|w|6=|wt |

Pr(W = w|T = wt ,C= 1)

+ ∑
w6=wt ,w/∈Lex

Pr(W = w|T = wt ,C= 1).

Our approach for bounding this probability will be to individually bound the three terms in
Equation 1. The first term considers all words in the lexicon with the same length aswt , and
accounts for the most likely type of error. The second term considers allwords in the lexicon,
but with a different length fromwt , and so considers many more possible words resulting from
segmentation errors, but each of which is much less likely to occur. Finally thethird term considers
words not in the lexicon, each of which occurs even less frequently.

To bound the first term, we can consider all words of a given Hamming distance i from wt . Our
strategy will then be to bound the contribution to the error from all words of Hamming distancei,
enabling us to bound the total error as the sum of a geometric series. We canthen follow the same
approach to bound the next two terms, where we will instead need to consider edit distance rather
than Hamming distance.

In order to bound these terms using a geometric series, we will need two initial steps. We will
need an upper bound on the probability of the consistency check passingfor a specific character
when the label is incorrect (2ε), and a lower bound on the probability of the consistency check
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passing when the label is correct (δ). We explain these quantities in the next section. Next, we will
need to relate these bounds on the character consistency check, Pr(C = 1|T = wt ,W), to the terms
in the geometric series, Pr(W = w|T = wt ,C= 1), which we do in Section 4.2.

4.1 Bounding the Character Consistency Check

We will rewrite the Pr(W = w|T = wt ,C= 1) terms as bounds involving Pr(C= 1|T = wt ,W = w)
using Bayes’ rule. We will make the assumption that the individual characterconsistency checks are
independent, although this is not exactly true, since there may be local noisethat degrades characters
in a word in the same way.

Assume that each character is formed on the page by taking a single true, latent appearance
based on the font and the particular character class and adding some amount of noise. Letε be
an upper bound on the probability that noise has caused a character of any given class to look like
it belongs to another specific class other than its own class. More formally, letting pc(a) be the
probability of a character appearancea for a given classc under the noise model,ε satisfies, for all
character classesc1,c2,c1 6= c2,

ε >
∫

a|pc1(a)<pc2(a)
pc1(a)da. (2)

In order to obtain a small value forε, and hence later a small probability of error, we revise
Equation 2 to be a bound only onnon-confusablecharacter classes. In other words, since some
character classes are highly confusable, such as ’o’, ’ c’, and ’e’, we ignore such substitutions when
computing Hamming and edit distance. We’ll refer to these distances as pseudo distances, so “mode”
and “mere” have a true Hamming distance of 2 but a pseudo-Hamming distance of 1.

This is similar to defining an equivalence relation where confusable characters belong to the
same equivalence class, and computing distance over the quotient set, butwithout transitivity, as,
for example, ’h’ may be confusable with ’n’, and ’n’ may be confusable with ’u’, but ’h’ may not
necessarily be confusable with ’u’.

For a character to pass a consistency check with the labelc2 when the true underlying label is
c1, roughly one of two things must happen: (a) either the character was corrupted and looked more
like c2 thanc1, or (b) some number of other characters with labelc2 were corrupted and looked like
c1’s.

The probability (a) is clearly upper bounded byε, since it requires both the corruption and most
of its neighbors to have the same labelc2. Sinceε≪ 1 and (b) requires several other characters
with labelc2 to be corrupted to look likec1, the probability of (b) should be bounded by (a), and
thusε, as well. Therefore the probability of the consistency check giving a label c2 when the true
underlying label isc1 is less than 2ε, for any classesc1,c2.

We will also need a lower bound on the probability that a character consistency check will
succeed if the OCR system’s label of the character matches the ground truthlabel. Letδ be a lower
bound on this quantity, which is dependent on both the amount of noise in the document and the
length of the document. (The latter condition is due to the fact that the character consistency check
requires a character to match to at least a certain number of other similarly labeled characters, so,
for example, if that number is not present in the document to begin with, then thecheck will fail
with certainty.)
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4.2 Bounding One Term

Consider bounding Pr(W = w|T = wt ,C= 1):

Pr(W = w|T = wt ,C= 1)

=
Pr(C= 1|T = wt ,W = w)Pr(W = w|T = wt)

∑w′ Pr(C= 1|T = wt ,W = w′)Pr(W = w′|T = wt)

=
Pr(C= 1|T = wt ,W = w)Pr(T = wt |W = w)Pr(W = w)

∑w′ Pr(C= 1|T = wt ,W = w′)Pr(T = wt |W = w′)Pr(W = w′)

≤
Pr(C= 1|T = wt ,W = w)Pr(T = wt |W = w)Pr(W = w)

Pr(C= 1|T = wt ,W = wt)Pr(T = wt |W = wt)Pr(W = wt)
. (3)

Here the inequality follows from the fact thatwt is one of the words being summed over in the
denominator, and hence replacing the sum with only thewt component will make the denominator
less than or equal to the sum.

4.3 Bounding the Probability of Lexicon Words

Recall thatwt , the initial OCR system’s word labeling, is a lexicon word with empty pseudo-
Hamming ball of size 1. For lexicon wordsw, we will assume that

Pr(T = wt |W = w)Pr(W = w)
Pr(T = wt |W = wt)Pr(W = wt)

< 1,

or, equivalently,

Pr(W = w|T = wt)

Pr(W = wt |T = wt)
< 1. (4)

One way to view this is to think ofT = wt as a feature. Then, for a reasonable classifier, this
assumption should hold for any document in the training set, as this is simply the Bayes decision
rule. (If the assumption did not hold, then we could increase the training accuracy by predictingw
whenever we saw the featureT = wt .)

Thus, we are assuming that a test document does not differ from the training documents used
to train the initial OCR system so much as to change the most probable word conditioned on the
featureT = wt , as suggested by Equation 4.4 Note thatwt has an empty Hamming ball of size 1, so
w differs fromwt by at least two letters. For this assumption to be violated, either the document must
be such that at least one letter is consistently interpreted as another, or has an extremely different
prior distribution on words than that of the training set, both of which are unlikely. As we discuss
later, the first case is also problematic for the character consistency check as well, and so falls
outside the scope of documents for which our method will be applicable.

It is important to note that this does not imply that the word accuracy need be particularly high,
for example, if all the words have the same prior probability of occurring, then the assumption could
hold for a classifier with accuracy simply better than the chance accuracy of 1

|Lex| , where|Lex| is the
size of the lexicon.

Applying this to Equation 3, we get

Pr(W = w|T = wt ,C= 1) ≤
Pr(C= 1|T = wt ,W = w)
Pr(C= 1|T = wt ,W = wt)

. (5)

4. This assumption is similar to, but slightly weaker than, the assumption madeunder covariate shift (Shimodaira, 2000).
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4.3.1 BOUNDING THE PROBABILITY OF LEXICON HAMMING WORDS

Consider a lexicon wordw that is a pseudo-Hamming distancei from wt . We can then simplify
Equation 5 to

Pr(W = w|T = wt ,C= 1) ≤
(2ε)i

δi

by making use of the assumption that the character consistency checks areindependent, and thatw
andwt only differ in i characters. For thosei characters,w does not match the OCR system’s label
andwt does match the OCR system’s label, so we use the bounds 2ε andδ.

Now let Di be the number of lexicon words of pseudo-Hamming distancei away fromwt . Let
rD be the rate of growth ofDi as a function ofi, that is,Di+2 ≤ r i

DD2. Assume, sinceε≪ 1, that
rD(

2ε
δ ) <

1
2.5 (To produce a final number for our theoretical bound, we later assume that ε < 10−3

andδ2 > 10−1. Given these numbers, our assumption becomesrd < 79, which is a very conservative
bound as experiments on the lexicon used in our main experiments showed thatrD is generally
bounded by 5.)

To get the total contribution to the error from all lexicon Hamming words, we sum overDi for
all i > 1,

∑
w6=wt ,w∈Lex,|w|=|wt |

Pr(W = w|T = wt ,C= 1) ≤ ∑
i=2

Di
(2ε)i

δi

= D2
(2ε)2

δ2 +D2
(2ε)2

δ2 ∑
i=1

(2rD
ε
δ
)i

≤ 8D2
ε2

δ2 .

4.3.2 BOUNDING LEXICON EDIT WORDS

Traditionally, edit distance is computed in terms of number of substitutions, insertions, and deletions
necessary to convert one string to another string. In our context, a morenatural notion may be splits
and joins rather than insertions and deletions. For example, the interpretationof an ’m’ may be split
into an ’r’ and an ’n’, or vice-versa for a join.

The probability that a split or a join passes the consistency check is upper bounded by(2ε)2.
We can see this from two perspectives. First, a split or join has traditional edit distance of 2, since it
requires an insertion or deletion and a substitution (“m” to “ mn” insertion followed by “mn” to “ rn”
substitution).

A more intuitive explanation is that, for a split, one character must be corrupted to look like the
left hand side of the resulting character and another character corrupted to look like the right hand
side, and for a join, the left hand side of a character must be corrupted tolook like one character and
the right hand side corrupted to look like another.

Similar to the case of confusable characters for substitutions, we also ignore confusable charac-
ters for splits and joins, namely ’r’ followed by ’n’ with ’ m’, and ’v’ followed by ’v’ with ’ w’. Thus,
“corn” and “comb” have an edit distance of 2 but a pseudo-edit distance of 1.

5. Recall thatδ, as defined earlier, is a lower bound on the probability that a character consistency check will succeed if
the OCR system’s label of the character is correct.
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Consider a lexicon wordw with pseudo-edit distancei from wt , and involving at least one inser-
tion or deletion (so|w| 6= |wt |). Similar to the lexicon Hamming words, we can simplify Equation 5
for w as

Pr(W = w|T = wt ,C= 1) ≤
(2ε)i+1

δi ,

since each substitution contributes a2ε
δ and each insertion or deletion, of which there is at least one,

contributes a(2ε)2

δ .
Let Ei be the number of lexicon wordsw with a pseudo-edit distancei away fromwt and|w| 6=

|wt |. Again, also assume thatrE, the rate of growth ofEi , satisfiesrE(
2ε
δ ) <

1
2. Summing the total

contribution to the error from lexicon edit words,

∑
w6=wt ,w∈Lex,|w|6=|wt |

Pr(W = w|T = wt ,C= 1) ≤ ∑
i=1

Ei
(2ε)i+1

δi

= E1
(2ε)2

δ
+E1

(2ε)2

δ ∑
i=1

(2rE
ε
δ
)i

≤ 8E1
ε2

δ

≤ 8E1
ε2

δ2 .

4.4 Bounding Non-Lexicon Words

Let Ni be the set of non-lexicon words with a pseudo-edit distancei from wt , and let pi =
Pr(T=wt |W∈Ni)Pr(W∈Ni)
Pr(T=wt |W=wt)Pr(W=wt)

. Assume the rate of growth ofrN of pi satisfiesrN(
2ε
δ )<

1
2.

Rearranging Equation 3 and summing over all non-lexicon words:

∑
w6=wt ,w/∈Lex

Pr(W = w|T = wt ,C= 1)

≤∑
i=1

∑
w∈Ni

Pr(C= 1|T = wt ,W = w)Pr(W = w|T = wt)

Pr(C= 1|T = wt ,W = wt)Pr(W = wt |T = wt)

≤∑
i=1

∑
w∈Ni

(2ε)i

δi

Pr(W = w|T = wt)

Pr(W = wt |T = wt)

= ∑
i=1

(2ε)i

δi

Pr(W ∈ Ni |T = wt)

Pr(W = wt |T = wt)

= ∑
i=1

(2ε)i

δi pi

≤ p1
2ε
δ
+ p1

2ε
δ ∑

i=1

(2rN
ε
δ
)i

≤ 4p1
ε
δ2 .
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4.5 Final Bound

Combining each of the individual bounds derived above, we have

Pr(W 6= wt |T = wt ,C= 1) ≤
(8D2+8E1)ε2+4p1ε

δ2 .

To use this in practice, we need to set some realistic (but conservative) values for the remaining
constants. Forε < 10−3, 8D2+8E1 < 102, 4p1 < 10−1, δ2 > 10−1,

Pr(W 6= wt |T = wt ,C= 1) ≤ 2·10−3.

The bounds for the constants chosen above were selected conservatively to hold for a large range
of documents, from very clean to moderately noisy. Not all documents will necessarily satisfy
these bounds. In a sense, these inequalities define the set of documents for which our algorithm
is expected to work, and for heavily degraded documents that fall outsidethis set, the character
consistency checks may no longer be robust enough to guarantee a very low probability of error.

Our final bound on the probability of error, 0.002, is the result of aworst case analysisunder
our assumptions. If our assumptions hold, the probability of error will likely be much lower for the
following reasons. For most pairs of letters,ε = 10−3 is not a tight upper bound. The quantity on
the right of Equation 4 is typically much lower than 1. The rate of growthsrD, rE, rN are typically
much lower than assumed. The bound onp1, the non-lexicon word probabilities, is not a tight upper
bound, as non-lexicon words mislabeled as lexicon words are rare. Finally, the number of Hamming
and edit distance neighborsD2 andE1 will typically be less than assumed.

On the other hand, for sufficiently noisy documents, and certain types of errors, our assumptions
do not hold. Some of the problematic cases include the following. As discussed, the assumption that
the individual character consistency checks are independent is not true. If a document is degraded or
has a font such that one letter is consistently interpreted as another,6 then that error will likely pass
the consistency check (i.e.,ε will be very large). If a document is degraded or is very short, thenδ
may be much smaller than 10−

1
2 . (The character consistency check requires a character to match to

at least a certain number of other similarly labeled characters, so, for example, if that number isn’t
present in the document to begin with, then the check will fail with certainty.) Finally, if the lexicon
is not appropriate for the document then 4p1 < 10−1 may not hold. This problem is compounded if
the OCR system projects to lexicon words. Still these assumptions appear to hold for a wide range
of documents.

5. Character Recognition

To validate the utility of our clean word lists, we implemented a simple technique for constructing
document-specific character appearance models, using SIFT features(Lowe, 2004),7 and demon-
strated that this model can be used to significantly reduce character error inthe remainder of the
document. We refer to our algorithm as SIFTAlign. In the future, we believe these clean word
lists can be incorporated into more sophisticated document-specific OCR modelsto obtain further
improvements in recognition accuracy, as we discuss in future work.

6. It should be noted that the probability of such an error (consistently interpreting one letter as another) is substantially
reduced by using a language model, for example, projecting uncertain words to nearby lexicon words.

7. A SIFT feature is essentially computed by dividing the image into a set of non-overlapping patches, and computing
a histogram over edge orientations weighted by edge strength, for each patch.
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We use the traditional SIFT descriptor without applying the Gaussian weighting because we did
not want to weight the center of an image more highly than the rest. In addition,we fix the scale to
be 1 and orientation to be 0 at all times. The SIFTAlign procedure is presented below:

1. Compute the SIFT descriptor for each character image in the clean list, at the center of the
image.

2. Compute the component-wise arithmetic mean of all SIFT descriptors for each character class
in the clean list. These mean descriptors are the “representations” (or character models) of
the respective classes.

3. For each character image in the clean list, compute a SIFT descriptor for each point in a
window in the center of the image (we use a 5x5 window) and select the descriptor with
smallest L2 distance to the mean SIFT descriptor for this character class. This aligns each
character’s descriptor to the mean class descriptor.

4. Test images are defined as follows. We start by collecting all characterimages that arenot
in the clean list (since we do not want to test on images we trained on). We alsofilter the
test images as follows. If Tesseract gives a label to an image that isnot a label for any of the
clean set characters, then we do not include this character in our test set. The rationale for
this is the following. Since our method will only assign to a character a label thatappears in
the clean set, then if the character was originally correct, we will definitely introduce an error
by attempting to correct it. Furthermore, we have no direct information aboutthe appearance
of characters whose labels arenot in the clean set, so it is relatively difficult to assess if the
original label is unreasonable. For these reasons, we only attempt to correct characters whose
Tesseract label appears as one of the clean set labels.

5. For each test image, again compute a 5x5 window of 25 SIFT descriptors, and select the
descriptor which has minimum L2 distance toany of the mean descriptors. This aligned
descriptor is the final descriptor for the test image.

6. Pass the SIFT descriptors for the training/test images found in the previous steps to a multi-
class SVM.

In summary, this classifier can be described as simply using an SVM with SIFT descriptors, except
that care is taken to align characters as well as possible for both training and testing. We use
theSVMmulticlass implementation8 of multiclass SVM (Tsochantaridis et al., 2004) and use a high
C value of 5,000,000, which was selected through cross-validation. This makes sense since we
generally do not have many instances of each character class in the cleanlist, and so we want a
minimum of slack, which a high C value enforces.

6. Experiments

In this section, we describe three types of experiments. First, we show thatour procedure for
generating clean sets achieves the very low error rate predicted by our bounds. Next, we show that
for a collection of 56 documents, using the clean sets to train new, document-specific classifiers

8. SVM implementation can be found athttp://svmlight.joachims.org/.
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Figure 1: Thick blue boxes indicate clean list words. Dashed red boxes indicate Tesseract’s confi-
dent word list. Thin green boxes indicate words in both lists. Despite being in Tesseract’s
list of high confidence words, “timber” is misrecognized by Tesseract as“timhcr”. All
other words in boxes were correctly translated by Tesseract. (Best viewed in color.)

significantly reduces OCR errors over the initial OCR system used. Finally,we show what happens
if a traditional measure of confidence is used to select a document-specifictraining set. In particular,
we show that our clean sets have far fewer errors and result in document-specific models that can
correct a much larger number of errors in the original OCR output.

6.1 Initial Clean Set Experiments

We experimented with two sets of documents. The first set consists of 10 documents from the
JSTOR archive9 and Project Gutenberg.10 This initial set of documents was used to evaluate our
clean list generation algorithm and develop our algorithm for producing character models from the
clean lists (Kae et al., 2009). In this work, our clean lists selected an average of 6% of the words
from each document.These clean lists did not contain a single error, that is, the precision of our
clean lists was 100%. This strongly supports our theoretical bounds established in Section 4.

9. JSTOR can be found athttp://www.jstor.org.
10. Project Gutenberg can be found athttp://www.gutenberg.org/.
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Figure 2: Character error reduction rates for SIFTAlign using the clean list (SIFTAlign Clean)
and Tesseract’s confident word list (SIFTAlign Tess) on the test sets of 56 documents.
SIFT Align Clean increases the error rate in 10 documents whereas SIFTAlign Tess
increases the error rate in 21 documents.

6.2 Correcting OCR Errors

After establishing the basic viability of the clean set procedure, we selectedanother set of documents
on which to test our end-to-end system of generating clean sets, using them to build document-
specific models, and using these models, in turn, to correct errors made bythe original OCR system.

The second set of documents, used for performance evaluation of the SIFT Align algorithm, are
56 documents taken from the Chronicling America11 archive of historical newspapers. Since our
initial OCR system (Tesseract) can only accept blocks of text and does not perform layout analysis,
we manually cropped out single columns of text from these newspaper pages. Other than cropping
and converting to the TIFF image format for Tesseract, the documents werenot modified in any
way. There are on average 1204 words per document. The clean list contains 2 errors out of a total
of 4465 words, within the theoretical bound of 0.002 mentioned earlier.

In an effort to increase the size of the clean lists beyond 6% per document,we experimented with
relaxing some of the criteria used to select the clean lists. In particular, we allowed the Hamming
ball of radius 1 for a word to be non-empty as long as the words within the balldid not appear within
the original OCR system’s translation. By making this small change, we were able to increase the
size of the clean lists to an average of 18% per document while introducing atmost one error per
document. We refer to the original clean lists asconservative clean listsand to the modified, larger,

11. Documents can be found athttp://chroniclingamerica.loc.gov/.
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Figure 3: Sample of results from two documents. A thin green box indicates both the initial OCR
system (Tesseract) and SIFTAlign correctly classified the character. A dashed red box
indicates both systems misclassified the character, and a thick blue box indicates that
SIFT Align classified the character correctly and Tesseract misclassified it. In this ex-
ample, there are no cases shown where Tesseract correctly classifieda character and
SIFT Align misclassifies it. (Best viewed in color.)

and slightly less accurate clean lists asaggressive clean lists. We decided to use the aggressive clean
lists for our experiments because they contain few errors and there are more character instances.12

From this point, our use of “clean list” refers to the aggressive clean list.
We then ran Tesseract on all documents, obtaining character bounding boxes13 and guesses

for each character. Next, we used Mechanical Turk14 to label all character bounding boxes to
produce a ground truth labeling. We instructed annotators to only label bounding boxes for which a
single character is clearly visible. Other cases (multiple characters in the bounding box or a partial
character) were discarded.

After the initial OCR system was used to make an initial pass at each document, the clean
list for that document was extracted. Character recognition was then performed as described in
Section 5. Even though many of the characters were already recognizedcorrectly by the original

12. To account for the looser criteria of the aggressive set, we would need to add a term to the theoretical bound that
considers the probability of error due to the true labeling of the word being aneighbor of Hamming distance 1 from
the OCR system’s interpretation. This term would beD1q2ε

δ , whereD1 is the number of neighbors of Hamming
distance 1, andq is the probability that a word that was not detected anywhere in the document actually appears in
the document. Given our assumed bounds ofε < 10−3, δ2 > 10−1, if we further assumeD1q to be conservatively
bounded by 0.3, then using the aggressive criteria doubles the probability of error to 0.004.

We note that the assumptions we make to produce the theoretical bound arevery conservative. This leaves
room for some experimentation to find the optimal balance between probability of error and clean set size, while still
maintaining an empirical error close to the predicted bound of 0.002.

13. This feature is not available out of the box; we edited the source code.
14. Mechanical Turk can be found athttps://www.mturk.com/mturk/welcome.
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OCR system, our approach improves the recognition to produce an even higher accuracy than the
original OCR system’s accuracy, on average. As shown in the next section, in most cases, this
resulted in correcting a significant portion of the characters in the documents.

6.3 Comparison to Another Confidence Measure

In order to judge the effectiveness of using our clean list, we also generated another confident word
list using Tesseract’s own measure of confidence.15 To generate the confident word list, we sort
Tesseract’s recognized words by their measure of confidence and take the topn words that result in
the same number of characters as our clean list.

In Figure 1, we show a portion of a document and the corresponding subset of clean list words
(generated by our process) and highly confident Tesseract words. All of the words in our clean list
were, in fact, correctly labeled by the initial Tesseract pass. In other words, our clean list for this
example was error free. But Tesseract’s high confidence word list includes “timber” which was
mistranslated by Tesseract.

We refer to the SIFTAlign algorithm using our clean list as SIFTAlign Clean and the SIFTAlign
algorithm using Tesseract’s confidences as SIFTAlign Tess. In Figure 2, we show the charac-
ter error reduction rates for both SIFTAlign Clean and SIFTAlign Tess. In 46 of the 56 docu-
ments, SIFTAlign Clean results in a reduction of errors whereas SIFTAlign Tess reduces error
in 35 documents. Note this figure shows percent error reduction, not theraw number of errors.
SIFT Align Clean made a total of 2487 character errors (44.4 errors per document)on the test set
compared to 7745 errors (138.3 errors per document) originally made by Tesseract on those same
characters. For the 10 cases where SIFTAlign Clean increased error, SIFTAlign Clean made 356
character errors and Tesseract made 263 errors. Thus, overall, the error reductions achieved by
SIFT Align Clean were much greater than the errors introduced.

SIFT Align Clean outperforms SiftAlign Tess. Average error reduction for
SIFT Align Clean is 34.1% compared to 9.5% for SiftAlign Tess. Error reduction is calculated as
(TT−ST)/TD whereTT is # Tesseract errors in the test set,ST is # SIFTAlign errors in the test
set andTD is # Tesseract errors in the document. SIFTAlign Clean also reduces the character error
in more documents than does SiftAlign Tess.

Our test cases only consider properly segmented characters which account for about half of
all the errors in these documents. The error reduction for SIFTAlign Clean over all characters
(segmented properly or not) is 20.3%.

Our experiments have shown that, on two separate sets of documents, our conservative clean
sets have very low error rates, meeting the theoretical bounds presented, and that by relaxing the
criteria slightly, we can get significantly larger sets while maintaining a low errorrate. We have
shown that using these clean sets to build document-specific models can significantly reduce OCR
errors, and that traditional confidence measures do not result in the same benefits.

7. Applications to Other Domains

We believe that our method of identifying subsets of results for which we canachieve a very high
bound of being correct can also be applied to other domains outside of OCR.

15. There are two measures of word confidence in Tesseract, described in the Tesseract documentation as “rating” and
“certainty”. We use “certainty”.
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One such domain is speech recognition. Here, our consistency check would be over acoustic
signals rather than a patch of pixels from a scanned document. This checkwould be similar to
Algorithm 1 except that we now apply the check to a segment of speech signal. In this speech
recognition context, the segment is now the “glyph”g and we want to check whether the label
assigned tog is reliable by comparingg with other segments from the same recording that are most
similar tog. Acoustic segmentg should be given the same label (in our terminology, dominated by
that label) as its most similar segments. We can then form equivalence classesof easily confusable
phonemes, and perform consistency checks on segments of speech that have been labeled as a word
with an empty pseudo-Hamming distance of 1. We could then follow a proceduresimilar to the
proof presented in Section 4 to bound the probability that segments of speech that pass such a
consistency check were incorrectly labeled.

By using this framework for speech recognition, we can potentially obtain theequivalent of
clean lists: portions of speech for which we are very confident the initial labeling was correct. This
may allow us to refine the speech recognition model to be specific to the recording, for instance,
allowing for a model that is specific to a particular individual’s accent.

The application of our idea to speech recognition may involve a slightly different set of difficul-
ties than when applied to OCR. For instance, identifying word segmentations maybe more difficult.
However, when training speech recognition systems, we may have accessto an additional source of
information in the form of closed captions. We can model the closed captions as a noisy signal of
the ground truth, independent of the speech recognizer. Taking a conservative estimate of the closed
captioning error rate, we can use the closed captions to reduce our bound on the probability of error
by requiring that the closed captioning match the labeling given by the speechrecognition system.

In Lamel et al. (2002), audio with closed captions is used to generate additional labeled training
data for a speech recognizer, by aligning the speech recognizer output to the closed captioning and
accepting segments where the two agree. Given the large amount of closedcaptioning data available,
this scenario is particularly amenable to our method of generating high precision training data (at
some cost to recall). Additionally, using a consistency check approach aspresented in Algorithm 1
can yield advantages over using an ad-hoc check such as directly accepting segments where the
speech recognizer and closed captioning agree. For instance, we may find it necessary to throw out
words where the two agree if the word has many nearby phonemic neighborswith which it may be
confused, and thereby likely reduce the error rate of the labelings usedas training data.

Another potential application for our bound analysis is in the area of information retrieval using
query expansion. As mentioned earlier in Section 2.2.2, query expansion isa technique used in
information retrieval to add terms to an initial query based on the highly rankeddocuments of the
initial query. One issue when performing query expansion is that matching withfalse positives can
quickly lead to errors due to drift in the query. For image retrieval, Chum etal. (2007) give a method
of spatial verification to eliminate false matches. In this context, queries are objects in images and
images are represented using a bag-of-visual-words.

Let the original query image beQ, and let the set of images returned initially by the search
engine beR. The goal is to identify returned images{Ri} that we believe contain the same object as
Q with very high confidence. We can then add these images{Ri} to the query and repeat the search
procedure with this expanded query set, ideally increasing the number of relevant images returned
by the search engine.

To reduce the possibility of adding a false matchRi to the query set, Chum et al. (2007) apply
a spatial verification procedure as follows. A feature point inRi matching a feature point inQ
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generates a hypothesized transformation that would put the object inRi in correspondence with the
object inQ. If this hypothesis leads to at least a certain number of matching feature pointsin Ri and
Q (same visual word and location after transformation), thenRi is spatially verified and added to the
query set.

We could estimate a bound on the probability of a false match passing spatial verification by
assuming a feature in a random, non-matching returned image matches a feature in the query image
Q with probability p. If we further assume that the probability of two features matching is indepen-
dent of the other features inQ and returned imageRi , then the number of features in correspondence
between theQ and non-matching resultRi is a binomial distribution with parametersn, the number
of features in the query image, andp.

A result imageRi passes the spatial verification if, for at least one hypothesized transformation
for puttingQ in correspondence withRi , at least 20 features are in correspondence. With the number
of hypotheses being approximately 103, n also being approximately 103, and a conservatively high
estimate ofp as 10−3 (given a visual dictionary of size 106), we find that even with a requirement
of just at least 12 features being in correspondence, the probability ofa false match being spatially
verified is less than 103 · (1−∑11

i=0

(n
i

)

pi(1− p)n−i)< 10−6.

However, spatial verification will likely result in more errors than predictedby this analysis,
due to the overly restrictive assumption that the probability of features matching in a result image
Ri is independent of the other features. One potential method for removing thisassumption is to
analyze the error in terms of common substructures: features belonging to similar substructures are
more likely to match, but the probability of one feature matching is independent of the features in
different substructures of the same image. This analysis may suggest ways of improving the spatial
verification, such as requiring that the matching features not be closely clustered in only one section
of the image.

8. Conclusions and Future Work

In this paper, we advocate dealing with the problem of non-stationarity between the training and test
distributions by identifying a subset of information whose interpretation we can be confident of, and
using this information as test-specific training data. We have applied this approach to the problem
of OCR, demonstrating that we can produce high-precision document-specific training data. Under
modest assumptions, we show the error rate of this labeled data to be bounded by 0.002, and give
empirical results consistent with this theoretical bound.

By combining this document-specific training data with simple appearance-based character
recognition techniques, we are able to achieve significant reductions in average character error.
We believe that further improvements can be achieved by using the clean lists inconjunction with
more sophisticated models, such as document-specific language models, as suggested by Wick et al.
(2007). In addition, while our work has taken the character segmentationsproduced by the initial
OCR system as fixed, we believe that the clean lists can also be used to re-segment and fix the large
percentage of initial errors that result from incorrect character segmentation.

Lastly, we also show potential applications to problems in other domains such asspeech recog-
nition and query expansion. While many of the techniques used in this work are specific to an OCR
application, we believe that the principles are quite general, and that the search for more formal
bounds on probabilities of error will lead toward a variety of new applications.
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